1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
//! Streams of discrete events

use std::sync::{ Arc, RwLock, Mutex, Weak };
use std::sync::mpsc::{ Receiver, channel };
use std::thread;
use source::{ Source, CallbackError, CallbackResult, with_weak };
use signal::{ self, Signal, SignalMut, sample_raw };
use transaction::{ commit, later };


/// An event sink.
///
/// This primitive is a way of generating streams of events. One can send
/// input values into a sink and generate a stream that fires all these inputs
/// as events:
///
/// ```
/// # use carboxyl::Sink;
/// // A new sink
/// let sink = Sink::new();
///
/// // Make an iterator over a stream.
/// let mut events = sink.stream().events();
///
/// // Send a value into the sink
/// sink.send(5);
///
/// // The stream
/// assert_eq!(events.next(), Some(5));
/// ```
///
/// You can also feed a sink with an iterator:
///
/// ```
/// # use carboxyl::Sink;
/// # let sink = Sink::new();
/// # let mut events = sink.stream().events();
/// sink.feed(20..40);
/// assert_eq!(events.take(4).collect::<Vec<_>>(), vec![20, 21, 22, 23]);
/// ```
///
/// # Asynchronous calls
///
/// It is possible to send events into the sink asynchronously using the methods
/// `send_async` and `feed_async`. Note though, that this will void some
/// guarantees on the order of events. In the following example, it is unclear,
/// which event is the first in the stream:
///
/// ```
/// # use carboxyl::Sink;
/// let sink = Sink::new();
/// let mut events = sink.stream().events();
/// sink.send_async(13);
/// sink.send_async(22);
/// let first = events.next().unwrap();
/// assert!(first == 13 || first == 22);
/// ```
///
/// `feed_async` provides a workaround, as it preserves the order of events from
/// the iterator. However, any event sent into the sink after a call to it, may
/// come at any point between the iterator events.
pub struct Sink<A> {
    source: Arc<RwLock<Source<A>>>,
}

impl<A> Clone for Sink<A> {
    fn clone(&self) -> Sink<A> {
        Sink { source: self.source.clone() }
    }
}

impl<A: Send + Sync> Sink<A> {
    /// Create a new sink.
    pub fn new() -> Sink<A> {
        Sink { source: Arc::new(RwLock::new(Source::new())) }
    }

    /// Generate a stream that fires all events sent into the sink.
    pub fn stream(&self) -> Stream<A> {
        Stream { source: self.source.clone(), keep_alive: Box::new(()), }
    }
}

impl<A: Send + Sync + Clone + 'static> Sink<A> {
    /// Asynchronous send.
    ///
    /// Same as `send`, but it spawns a new thread to process the updates to
    /// dependent streams and signals.
    pub fn send_async(&self, a: A) {
        let clone = self.clone();
        thread::spawn(move || clone.send(a));
    }

    /// Feed values from an iterator into the sink.
    ///
    /// This method feeds events into the sink from an iterator.
    pub fn feed<I: IntoIterator<Item=A>>(&self, iterator: I) {
        for event in iterator {
            self.send(event);
        }
    }

    /// Asynchronous feed.
    ///
    /// This is the same as `feed`, but it does not block, since it spawns the
    /// feeding as a new task. This is useful, if the provided iterator is large
    /// or even infinite (e.g. an I/O event loop).
    pub fn feed_async<I: IntoIterator<Item=A> + Send + 'static>(&self, iterator: I) {
        let clone = self.clone();
        thread::spawn(move || clone.feed(iterator));
    }

    /// Send a value into the sink.
    ///
    /// When a value is sent into the sink, an event is fired in all dependent
    /// streams.
    pub fn send(&self, a: A) {
        commit(|| self.source.write().unwrap().send(a))
    }
}


/// Trait to wrap cloning of boxed values in a object-safe manner
pub trait BoxClone: Sync + Send {
    /// Clone the object as a boxed trait object
    fn box_clone(&self) -> Box<BoxClone>; 
}

impl<T: Sync + Send + Clone + 'static> BoxClone for T {
    fn box_clone(&self) -> Box<BoxClone> {
        Box::new(self.clone())
    }
}


/// Access a stream's source.
///
/// This is not defined as a method, so that it can be public to other modules
/// in this crate while being private outside the crate.
pub fn source<A>(stream: &Stream<A>) -> &Arc<RwLock<Source<A>>> {
    &stream.source
}


/// A stream of events.
///
/// Conceptually a stream can be thought of as a series of discrete events that
/// occur at specific times. They are ordered by a transaction system. This
/// means that firings of disjoint events can not interfere with each other. The
/// consequences of one event are atomically reflected in dependent quantities.
///
/// Streams provide a number of primitive operations. These can be used to
/// compose streams and combine them with signals. For instance, streams can be
/// mapped over with a function, merged with another stream of the same type or
/// filtered by some predicate.
///
/// # Algebraic laws
///
/// Furthermore, streams satisfy certain algebraic properties that are useful to
/// reason about them.
///
/// ## Monoid
///
/// For once, streams of the same type form a **monoid** under merging. The
/// neutral element in this context is `Stream::never()`. So the following laws
/// always hold for streams `a`, `b` and `c` of the same type:
///
/// - Left identity: `Stream::never().merge(&a) == a`,
/// - Right identity: `a.merge(&Stream::never()) == a`,
/// - Associativity: `a.merge(&b).merge(&c) == a.merge(&b.merge(&c))`.
///
/// *Note that equality in this context is not actually implemented as such,
/// since comparing two (potentially infinite) streams is a prohibitive
/// operation. Instead, the expressions above can be used interchangably and
/// behave identically.*
///
/// ## Functor
///
/// Under the mapping operation streams also become a functor. A functor is a
/// generic type like `Stream` with some mapping operation that takes a function
/// `Fn(A) -> B` to map a `Stream<A>` to a `Stream<B>`. Algebraically it
/// satisfies the following laws:
///
/// - The identity function is preserved: `a.map(|x| x) == a`,
/// - Function composition is respected: `a.map(f).map(g) == a.map(|x| g(f(x)))`.
pub struct Stream<A> {
    source: Arc<RwLock<Source<A>>>,
    #[allow(dead_code)]
    keep_alive: Box<BoxClone>,
}

impl<A> Clone for Stream<A> {
    fn clone(&self) -> Stream<A> {
        Stream {
            source: self.source.clone(),
            keep_alive: self.keep_alive.box_clone(),
        }
    }
}

impl<A: Clone + Send + Sync + 'static> Stream<A> {
    /// Create a stream that never fires. This can be useful in certain
    /// situations, where a stream is logically required, but no events are
    /// expected.
    pub fn never() -> Stream<A> {
        Stream {
            source: Arc::new(RwLock::new(Source::new())),
            keep_alive: Box::new(()) 
        }
    }

    /// Map the stream to another stream using a function.
    ///
    /// `map` applies a function to every event fired in this stream to create a
    /// new stream of type `B`.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink: Sink<i32> = Sink::new();
    /// let mut events = sink.stream().map(|x| x + 4).events();
    /// sink.send(3);
    /// assert_eq!(events.next(), Some(7));
    /// ```
    pub fn map<B, F>(&self, f: F) -> Stream<B>
        where B: Send + Sync + Clone + 'static,
              F: Fn(A) -> B + Send + Sync + 'static,
    {
        commit(|| {
            let src = Arc::new(RwLock::new(Source::new()));
            let weak = src.downgrade();
            self.source.write().unwrap()
                .register(move |a| with_weak(&weak, |src| src.send(f(a))));
            Stream {
                source: src,
                keep_alive: Box::new(self.clone()),
            }
        })
    }

    /// Filter a stream according to a predicate.
    ///
    /// `filter` creates a new stream that only fires those events from the
    /// original stream that satisfy the predicate.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink: Sink<i32> = Sink::new();
    /// let mut events = sink.stream()
    ///     .filter(|&x| (x >= 4) && (x <= 10))
    ///     .events();
    /// sink.send(2); // won't arrive
    /// sink.send(5); // will arrive
    /// assert_eq!(events.next(), Some(5));
    /// ```
    pub fn filter<F>(&self, f: F) -> Stream<A>
        where F: Fn(&A) -> bool + Send + Sync + 'static,
    {
        self.filter_map(move |a| if f(&a) { Some(a) } else { None })
    }

    /// Both filter and map a stream.
    ///
    /// This is equivalent to `.map(f).filter_some()`.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink = Sink::new();
    /// let mut events = sink.stream()
    ///     .filter_map(|i| if i > 3 { Some(i + 2) } else { None })
    ///     .events();
    /// sink.send(2);
    /// sink.send(4);
    /// assert_eq!(events.next(), Some(6));
    /// ```
    pub fn filter_map<B, F>(&self, f: F) -> Stream<B>
        where B: Send + Sync + Clone + 'static,
              F: Fn(A) -> Option<B> + Send + Sync + 'static,
    {
        self.map(f).filter_some()
    }

    /// Merge with another stream.
    ///
    /// `merge` takes two streams and creates a new stream that fires events
    /// from both input streams.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink_1 = Sink::<i32>::new();
    /// let sink_2 = Sink::<i32>::new();
    /// let mut events = sink_1.stream().merge(&sink_2.stream()).events();
    /// sink_1.send(2);
    /// assert_eq!(events.next(), Some(2));
    /// sink_2.send(4);
    /// assert_eq!(events.next(), Some(4));
    /// ```
    pub fn merge(&self, other: &Stream<A>) -> Stream<A> {
        commit(|| {
            let src = Arc::new(RwLock::new(Source::new()));
            for parent in [self, other].iter() {
                let weak = src.downgrade();
                parent.source.write().unwrap()
                    .register(move |a| with_weak(&weak, |src| src.send(a)));
            }
            Stream {
                source: src,
                keep_alive: Box::new((self.clone(), other.clone())),
            }
        })
    }

    /// Coalesce multiple event firings within the same transaction into a
    /// single event.
    ///
    /// The function should ideally commute, as the order of events within a
    /// transaction is not well-defined.
    pub fn coalesce<F>(&self, f: F) -> Stream<A>
        where F: Fn(A, A) -> A + Send + Sync + 'static,
    {
        commit(|| {
            let src = Arc::new(RwLock::new(Source::new()));
            let weak = src.downgrade();
            self.source.write().unwrap().register({
                let mutex = Arc::new(Mutex::new(None));
                move |a| {
                    let mut inner = mutex.lock().unwrap();
                    *inner = Some(match inner.take() {
                        Some(b) => f(a, b),
                        None => a,
                    });
                    // Send the updated value later
                    later({
                        let mutex = mutex.clone();
                        let weak = weak.clone();
                        move || {
                            let mut inner = mutex.lock().unwrap();
                            // Take it out and map, so that it does not happen twice
                            inner.take().map(|value|
                                with_weak(&weak, |src| src.send(value))
                            );
                        }
                    });
                    Ok(())
                }
            });
            Stream { source: src, keep_alive: Box::new(self.clone()) }
        })
    }

    /// Hold an event in a signal.
    ///
    /// The resulting signal `hold`s the value of the last event fired by the
    /// stream.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink = Sink::new();
    /// let signal = sink.stream().hold(0);
    /// assert_eq!(signal.sample(), 0);
    /// sink.send(2);
    /// assert_eq!(signal.sample(), 2);
    /// ```
    pub fn hold(&self, initial: A) -> Signal<A> {
        signal::hold(initial, self)
    }

    /// A blocking iterator over the stream.
    pub fn events(&self) -> Events<A> { Events::new(self) }

    /// Scan a stream and accumulate its event firings in a signal.
    ///
    /// Starting at some initial value, each new event changes the value of the
    /// resulting signal as prescribed by the supplied function.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink = Sink::new();
    /// let sum = sink.stream().scan(0, |a, b| a + b);
    /// assert_eq!(sum.sample(), 0);
    /// sink.send(2);
    /// assert_eq!(sum.sample(), 2);
    /// sink.send(4);
    /// assert_eq!(sum.sample(), 6);
    /// ```
    pub fn scan<B, F>(&self, initial: B, f: F) -> Signal<B>
        where B: Send + Sync + Clone + 'static,
              F: Fn(B, A) -> B + Send + Sync + 'static,
    {
        Signal::cyclic(|scan| scan.snapshot(self, f).hold(initial))
    }

    /// Scan a stream and accumulate its event firings in some mutable state.
    ///
    /// Semantically this is equivalent to `scan`. However, it allows one to use
    /// a non-Clone type as an accumulator and update it with efficient in-place
    /// operations.
    ///
    /// The resulting `SignalMut` does have a slightly different API from a
    /// regular `Signal` as it does not allow clones.
    ///
    /// # Example
    ///
    /// ```
    /// # use carboxyl::{ Sink, Signal };
    /// let sink: Sink<i32> = Sink::new();
    /// let sum = sink.stream()
    ///     .scan_mut(0, |sum, a| *sum += a)
    ///     .combine(&Signal::new(()), |sum, ()| *sum);
    /// assert_eq!(sum.sample(), 0);
    /// sink.send(2);
    /// assert_eq!(sum.sample(), 2);
    /// sink.send(4);
    /// assert_eq!(sum.sample(), 6);
    /// ```
    pub fn scan_mut<B, F>(&self, initial: B, f: F) -> SignalMut<B>
        where B: Send + Sync + 'static,
              F: Fn(&mut B, A) + Send + Sync + 'static,
    {
        signal::scan_mut(self, initial, f)
    }
}

impl<A: Clone + Send + Sync + 'static> Stream<Option<A>> {
    /// Filter a stream of options.
    ///
    /// `filter_some` creates a new stream that only fires the unwrapped
    /// `Some(…)` events from the original stream omitting any `None` events.
    ///
    /// ```
    /// # use carboxyl::Sink;
    /// let sink = Sink::new();
    /// let mut events = sink.stream().filter_some().events();
    /// sink.send(None); // won't arrive
    /// sink.send(Some(5)); // will arrive
    /// assert_eq!(events.next(), Some(5));
    /// ```
    pub fn filter_some(&self) -> Stream<A> {
        commit(|| {
            let src = Arc::new(RwLock::new(Source::new()));
            let weak = src.downgrade();
            self.source.write().unwrap()
                .register(move |a| a.map_or(
                    Ok(()),
                    |a| with_weak(&weak, |src| src.send(a))
                ));
            Stream {
                source: src,
                keep_alive: Box::new(self.clone())
            }
        })
    }
}

impl<A: Send + Sync + Clone + 'static> Stream<Stream<A>> {
    /// Switch between streams.
    ///
    /// This takes a stream of streams and maps it to a new stream, which fires
    /// all events from the most recent stream fired into it.
    ///
    /// # Example
    ///
    /// ```
    /// # use carboxyl::{ Sink, Stream };
    /// // Create sinks
    /// let stream_sink: Sink<Stream<i32>> = Sink::new();
    /// let sink1: Sink<i32> = Sink::new();
    /// let sink2: Sink<i32> = Sink::new();
    ///
    /// // Switch and listen
    /// let switched = stream_sink.stream().switch();
    /// let mut events = switched.events();
    ///
    /// // Should not receive events from either sink
    /// sink1.send(1); sink2.send(2);
    ///
    /// // Now switch to sink 2
    /// stream_sink.send(sink2.stream());
    /// sink1.send(3); sink2.send(4);
    /// assert_eq!(events.next(), Some(4));
    ///
    /// // And then to sink 1
    /// stream_sink.send(sink1.stream());
    /// sink1.send(5); sink2.send(6);
    /// assert_eq!(events.next(), Some(5));
    /// ```
    pub fn switch(&self) -> Stream<A> {
        fn rewire_callbacks<A>(new_stream: Stream<A>, source: Weak<RwLock<Source<A>>>,
                               terminate: &mut Arc<()>)
            -> CallbackResult
            where A: Send + Sync + Clone + 'static,
        {
            *terminate = Arc::new(());
            let weak = terminate.downgrade();
            new_stream.source.write().unwrap().register(move |a|
                weak.upgrade()
                    .ok_or(CallbackError::Disappeared)
                    .and_then(|_| with_weak(&source, |src| src.send(a)))
            );
            Ok(())
        }
        commit(|| {
            let src = Arc::new(RwLock::new(Source::new()));
            let weak = src.downgrade();
            self.source.write().unwrap().register({
                let mut terminate = Arc::new(());
                move |stream| rewire_callbacks(stream, weak.clone(), &mut terminate)
            });
            Stream {
                source: src,
                keep_alive: Box::new(self.clone()),
            }
        })
    }
}


/// Make a snapshot of a signal, whenever a stream fires an event.
pub fn snapshot<A, B, C, F>(signal: &Signal<A>, stream: &Stream<B>, f: F) -> Stream<C>
    where A: Clone + Send + Sync + 'static,
          B: Clone + Send + Sync + 'static,
          C: Clone + Send + Sync + 'static,
          F: Fn(A, B) -> C + Send + Sync + 'static,
{
    commit(|| {
        let src = Arc::new(RwLock::new(Source::new()));
        let weak = src.downgrade();
        stream.source.write().unwrap().register({
            let signal = signal.clone();
            move |b| with_weak(&weak, |src| src.send(f(sample_raw(&signal), b)))
        });
        Stream {
            source: src,
            keep_alive: Box::new((stream.clone(), signal.clone())),
        }
    })
}


/// A blocking iterator over events in a stream.
pub struct Events<A> {
    receiver: Receiver<A>,
    #[allow(dead_code)]
    keep_alive: Box<BoxClone>,
}

impl<A: Send + Sync + 'static> Events<A> {
    /// Create a new events iterator.
    fn new(stream: &Stream<A>) -> Events<A> {
        commit(|| {
            let (tx, rx) = channel();
            let tx = Mutex::new(tx);
            stream.source.write().unwrap().register(
                move |a| tx.lock().unwrap().send(a).map_err(|_| CallbackError::Disappeared)
            );
            Events {
                receiver: rx,
                keep_alive: Box::new(stream.clone()),
            }
        })
    }
}

impl<A: Send + Sync + 'static> Iterator for Events<A> {
    type Item = A;
    fn next(&mut self) -> Option<A> { self.receiver.recv().ok() }
}


#[cfg(test)]
mod test {
    use std::thread;
    use quickcheck::quickcheck;

    use testing::{ id, stream_eq };
    use super::*;

    #[test]
    fn sink() {
        let sink = Sink::new();
        let mut events = sink.stream().events();
        sink.send(1);
        sink.send(2);
        assert_eq!(events.next(), Some(1));
        assert_eq!(events.next(), Some(2));
    }

    #[test]
    fn map() {
        let sink = Sink::new();
        let triple = sink.stream().map(|x| 3 * x);
        let mut events = triple.events();
        sink.send(1);
        assert_eq!(events.next(), Some(3));
    }

    #[test]
    fn filter_some() {
        let sink = Sink::new();
        let small = sink.stream().filter_some();
        let mut events = small.events();
        sink.send(None);
        sink.send(Some(9));
        assert_eq!(events.next(), Some(9));
    }

    #[test]
    fn chain_1() {
        let sink: Sink<i32> = Sink::new();
        let chain = sink.stream()
            .map(|x| x / 2)
            .filter(|&x| x < 3);
        let mut events = chain.events();
        sink.send(7);
        sink.send(4);
        assert_eq!(events.next(), Some(2));
    }

    #[test]
    fn merge() {
        let sink1 = Sink::new();
        let sink2 = Sink::new();
        let mut events = sink1.stream().merge(&sink2.stream()).events();
        sink1.send(12);
        sink2.send(9);
        assert_eq!(events.next(), Some(12));
        assert_eq!(events.next(), Some(9));
    }

    #[test]
    fn chain_2() {
        let sink1: Sink<i32> = Sink::new();
        let sink2: Sink<i32> = Sink::new();
        let mut events = sink1.stream().map(|x| x + 4)
            .merge(
                &sink2.stream()
                .filter_map(|x| if x < 4 { Some(x) } else { None })
                .map(|x| x * 5))
            .events();
        sink1.send(12);
        sink2.send(3);
        assert_eq!(events.next(), Some(16));
        assert_eq!(events.next(), Some(15));
    }

    #[test]
    fn move_closure() {
        let sink = Sink::<i32>::new();
        let x = 3;
        sink.stream().map(move |y| y + x);
    }

    #[test]
    fn scan_race_condition() {
        let sink = Sink::new();
        // Feed the sink in the background
        sink.feed_async(0..100000);
        // Try it multiple times to increase failure probability, when a data
        // race can potentially happen.
        for _ in 0..10 {
            let _sum = sink.stream().scan(0, |a, b| a + b);
        }
    }

    #[test]
    fn sink_send_async() {
        let sink = Sink::new();
        let mut events = sink.stream().events();
        sink.send_async(1);
        assert_eq!(events.next(), Some(1));
    }

    #[test]
    fn sink_feed() {
        let sink = Sink::new();
        let events = sink.stream().events();
        sink.feed(0..10);
        for (n, m) in events.take(10).enumerate() {
            assert_eq!(n as i32, m);
        }
    }

    #[test]
    fn sink_feed_async() {
        let sink = Sink::new();
        let events = sink.stream().events();
        sink.feed_async(0..10);
        for (n, m) in events.take(10).enumerate() {
            assert_eq!(n as i32, m);
        }
    }

    #[test]
    fn coalesce() {
        let sink = Sink::new();
        let stream = sink.stream()
            .merge(&sink.stream())
            .coalesce(|a, b| a + b);
        let mut events = stream.events();

        sink.send(1);
        assert_eq!(events.next(), Some(2));
    }

    #[test]
    fn monoid_left_identity() {
        fn check(input: Vec<i32>) -> Result<bool, String> {
            let sink = Sink::new();
            let a = sink.stream();
            let eq = stream_eq(&Stream::never().merge(&a), &a);
            sink.feed(input.into_iter());
            eq.sample()
        }
        quickcheck(check as fn(Vec<i32>) -> Result<bool, String>);
    }

    #[test]
    fn monoid_right_identity() {
        fn check(input: Vec<i32>) -> Result<bool, String> {
            let sink = Sink::new();
            let a = sink.stream();
            let eq = stream_eq(&a.merge(&Stream::never()), &a);
            sink.feed(input.into_iter());
            eq.sample()
        }
        quickcheck(check as fn(Vec<i32>) -> Result<bool, String>);
    }

    #[test]
    fn monoid_associative() {
        fn check(input_a: Vec<i32>, input_b: Vec<i32>, input_c: Vec<i32>) -> Result<bool, String> {
            let sink_a = Sink::new();
            let sink_b = Sink::new();
            let sink_c = Sink::new();
            let a = sink_a.stream();
            let b = sink_b.stream();
            let c = sink_c.stream();
            let eq = stream_eq(&a.merge(&b.merge(&c)), &a.merge(&b).merge(&c));
            /* feed in parallel */ {
                let _g1 = thread::scoped(|| sink_a.feed(input_a.into_iter()));
                let _g2 = thread::scoped(|| sink_b.feed(input_b.into_iter()));
                let _g3 = thread::scoped(|| sink_c.feed(input_c.into_iter()));
            }
            eq.sample()
        }
        quickcheck(check as fn(Vec<i32>, Vec<i32>, Vec<i32>) -> Result<bool, String>);
    }

    #[test]
    fn functor_identity() {
        fn check(input: Vec<i32>) -> Result<bool, String> {
            let sink = Sink::new();
            let a = sink.stream();
            let eq = stream_eq(&a.map(id), &a);
            sink.feed(input.into_iter());
            eq.sample()
        }
        quickcheck(check as fn(Vec<i32>) -> Result<bool, String>);
    }

    #[test]
    fn functor_composition() {
        fn check(input: Vec<i32>) -> Result<bool, String> {
            fn f(n: i32) -> i64 { (n + 3) as i64 }
            fn g(n: i64) -> f64 { n as f64 / 2.5 }

            let sink = Sink::new();
            let a = sink.stream();
            let eq = stream_eq(&a.map(f).map(g), &a.map(|n| g(f(n))));
            sink.feed(input.into_iter());
            eq.sample()
        }
        quickcheck(check as fn(Vec<i32>) -> Result<bool, String>);
    }
}